翻訳と辞書 |
Hurwitz zeta function : ウィキペディア英語版 | Hurwitz zeta function In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments ''s'' with Re(''s'') > 1 and ''q'' with Re(''q'') > 0 by : This series is absolutely convergent for the given values of ''s'' and ''q'' and can be extended to a meromorphic function defined for all ''s''≠1. The Riemann zeta function is ζ(''s'',1). ==Analytic continuation== If the Hurwitz zeta function can be defined by the equation : where the contour is a loop around the negative real axis. This provides an analytic continuation of . The Hurwitz zeta function can be extended by analytic continuation to a meromorphic function defined for all complex numbers with . At it has a simple pole with residue . The constant term is given by : where is the Gamma function and is the digamma function.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hurwitz zeta function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|